Quaternions

Quaternions are to vectors as vectors are to points. Where a vector can only translate a point, a quaternion can both scale and rotate a vector. Quaternions were originally created by Sir William Hamilton and can be thought of extending complex numbers into three dimensions, $\hat{i}, \hat{j}, \hat{k}$. In computer graphics they are useful to describe rotations and can perform some operations more efficiently than by matrices alone, such as smoothly interpolating between two orientations.

Definition

A quaternion, q , is composed of a real part, s , and a complex vector v . $q=(s, v)$

Addition

Addition of two quaternions is performed component wise:
$q+q^{\prime}=\left(s+s^{\prime}, v+v^{\prime}\right)$

Multiplication

Multiplication of quaternions is performed as follows:
$q q^{\prime}=\left(s s^{\prime}-v \cdot v^{\prime}, v \times v^{\prime}+s v^{\prime}+s^{\prime} v\right)$

Conjugate

The conjugate of a quaternion simply negates the complex component.
if $q=(s, v)$ then $q^{*}=(s,-v)$

Magnitude

The magnitude of a quaternion is the product of itself and it's conjugate. $|q|=q q^{*}=s^{2}+v \cdot v=s^{2}+x^{2}+y^{2}+z^{2}$

Unit quaternion

A unit quaternion has a magnitude of one. Geometrically this is the set of quaternions that form a unit sphere. They scale the vector by one and perform any possible rotation.

Inverse of quaternion

$q^{-1}=\frac{q^{*}}{|q|}$
Note: if a quaternion is of unit length, the inverse is simply the conjugate.

Vector rotation

In order to rotate a vector we must represent both the vector and rotation as quaternions.

A vector can be represented as the complex component of quaternion p with real part zero.
$p=(0, v)$
The rotation of θ degrees about axis n can be represented as follows: $q=(\cos (\theta / 2), \sin (\theta / 2) \cdot n)$

We rotate by multiplying the quaternion p by both q and it's inverse. The order of operations is important as quaternion multiplication is not commutative.
$r=q p q^{-1}$
The resulting quaternion r will have a zero real component and a complex component which is the final rotated vector.
$r=(0, v)$
Multiple rotations can be combined by simply multiplying two rotation quaternions together.
$q^{\prime}=q_{1} q_{2}$

Quaternion to homogeneous rotation matrix

You can directly convert a quaternion into a rotation matrix as follows:

$$
M \xlongequal{ }\left|\begin{array}{cccc}
1-2\left(y^{2}+z^{2}\right) & 2 x y-2 s z & 2 s y+2 x z & 0 \\
2 x y+2 s z & 1-2\left(x^{2}+z^{2}\right) & -2 s x+2 y z & 0 \\
-2 s y+2 x z & 2 s x+2 y z & 1-2\left(x^{2}+y^{2}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right|
$$

Notice the quaterion with theta $=0$ maps to the identity matrix.

$$
q=(1,0)=\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|
$$

Spherical linear interpolation (SLERP)

Spherical linear interpolation smoothly interpolates between two rotations based on parameter u.

$$
\begin{aligned}
& \operatorname{slerp}\left(q_{1}, q_{2}, u\right)=q_{1} \frac{\sin (1-u) \omega}{\sin (\omega)}+q_{2} \frac{\sin (\omega u)}{\sin (\omega)} \text { where } \omega=\arccos \left(q_{1} \cdot q_{2}\right) \text { and } u \in[0,1] \\
& \operatorname{slerp}\left(q_{1}, q_{2}, 0\right)=q_{1} \\
& \operatorname{slerp}\left(q_{1}, q_{2}, 1\right)=q_{2}
\end{aligned}
$$

